About Metabolomics

Metabolomics is the simultaneous measurement of hundreds to thousands of small molecule metabolites in a cell, tissue, or bio-fluid. For general context, “small” means molecules in the range of 100 ~1000 Daltons, in contrast to “large” molecules like proteins or nucleotides that are often tens-to-hundreds of thousands of Daltons in molecular weight. These small molecules participate directly in most of the energetics (e.g. ATP) and biosynthetic processes in the body – they are the molecules used to build proteins, DNA, and RNA, and to transport nutrients and waste products. Thus, metabolomics provides a direct measurement of real-time cellular physiology and biochemistry of cells and tissues at the most detailed level possible. By analyzing variation in the abundance of large numbers of metabolites simultaneously in a biological sample, which may result from experimental studies or natural variation related to genetics or disease states, researchers have been able to elucidate new mechanistic insight into biological processes, including the discovery of disease markers, treatment responses, and new drug targets.
The analytical tools most commonly used for metabolomics are based on either mass spectrometry or nuclear magnetic resonance spectroscopy (“NMR”). GMet’s platform is based on a suite of rigorous, well validated and highly published mass spectrometry tools.
While a number of academic and industrial researchers and clinicians have demonstrated the potential of metabolomics in recent years, significant time and cost constraints have limited the broader application of this technology. The existing tools available to support metabolomics data acquisition and downstream data handling for QC and interpretation, coupled with the highly specialized knowledge-base needed for metabolism research (which is very different from the knowledge-base for genes, transcripts, and other omics) have created a barrier to entry for the research community to get the most from incorporating metabolomics into their research programs.
For the first time, General Metabolics brings scale to metabolomics to allow these powerful studies to become a regular part of the R&D workflow, enabling researchers to identify markers of disease, to assess target engagement, and to mechanistically link targets to broader cellular physiology or to evaluate patient response to treatment.
Interested to read more about how GMet technology is being used to advance and scale academic metabolism research and bring new insights to industry?
Following are selected peer-reviewed publications with GMet founders and advisors.
Large Scale/Population Analyses
Nature Medicine 2022, 28: 2333–2343.
Cell. 2021;184(9):2302-2315.e12.
Nature Immunology 2021, 22:287–300.
Cellular Mechanisms
Cell 2016, 167: 829–842.
Xao, T., et al. Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism.
Nature 2017, 548(7666):228-233.
Disease and Related
Mol Syst Biol. 2022;18(11):e11033.
Cell Metabolism 2017, 26(4):660-671.
Diabetes 2019, 68(12):2272-2286. doi: 10.2337/db19-0131.
Cell 2018, 172(1-2):147-161.
Arthritis Rheumatol. 2021, 73 (suppl 9).
Integrated Omics and Metabolomics Methodology
Analytical Chemistry 2011, 83(18):7074-80.
Cell Syst. 2022 Jan 19;13(1):43-57.e6.
Mol Systems Biology 2022, 18(2): e10767.
Immunity 2015, 42(3): 419–430. doi: 10.1016/j.immuni.2015.02.005.
Nucleic Acids Research 2016, 44(W1): W194-200.
Microbiology & Microbiome Research
Nat Microbiol. 2021 Feb;6(2):196-208. doi: 10.1038/s41564-020-00816-5. Epub 2021 Jan 4. PMID: 33398099; PMCID: PMC7610452.
Nat Commun 10, 3354 (2019).
Mol Syst Biol. 2019 Aug;15(8):e9008. doi: 10.15252/msb.20199008. PMID: 31464375; PMCID: PMC6706640.

